Indexed by:
Abstract:
Microstructure and magnetic properties were studied for the commercial Sm(CoFeCuZr)z magnets before and after post annealing treatment. The results show that the phases composition and orientation of the magnet do not change after post annealing treatment, but the substantial redistribution of Cu element within multiscale (the microscale crystal grain and the nanoscale cellular structure) is observed simul-taneously. In detail, along with the Cu redistribution, the thickness of the Cu-rich Sm(Co,Cu)5 cell boundary becomes thinner, and the Cu concentration in the boundary increases sharply. The pinning field of domain walls and corresponding coercivity increase remarkably with slight remanence and maximum energy product loss, and the overall magnetic performance of (BH)max (MGOe) thorn Hcj (kOe) increases by 54.3% as a result. Moreover, the thermal stability of the magnet improves as well. On the other hand, Cu-lean phenomenon was observed along the grain boundary region, triggering to magnetic domain reversal process and slightly undermining the squareness of the demagnetization curve of the magnet.(c) 2021 Chinese Society of Rare Earths. Published by Elsevier B.V. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
JOURNAL OF RARE EARTHS
ISSN: 1002-0721
Year: 2022
Issue: 10
Volume: 40
Page: 1592-1597
4 . 9
JCR@2022
4 . 9 0 0
JCR@2022
ESI Discipline: CHEMISTRY;
ESI HC Threshold:53
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 11
Affiliated Colleges: