Indexed by:
Abstract:
Lead-free piezoceramics with a temperature-insensitive figure of merit (FOM = d(2)/epsilon) are urgently required to build a new generation of piezoelectric energy harvesters (PEHs) that can be used for environmental protection and new energy applications. Although (K,Na)NbO3 (KNN)-based ceramics are among the most promising lead-free piezoelectric candidates, the piezoelectric charge constant (d(33)) and dielectric constant (epsilon(r)) of KNN with an individual orthorhombic (O) phase exhibit opposite change trends in a certain temperature range, resulting in FOM with poor temperature stability. To break this bottleneck, a diffuse multiphase coexistence (DMC) strategy is proposed to realize a temperature-insensitive FOM. By constructing a DMC-featured orthorhombic-tetragonal (O-T) phase boundary associated with a hierarchical domain configuration, the temperature-driven synergistic variation of d(33) and epsilon(r) was realized in the 0.965(K0.48Na0.52)NbO3-0.035(Bi0.5Li0.5)ZrO3 (KNN-BLZ) system. Benefiting from an excellent temperature-insensitive FOM, the power density of the cantilever beam-type PEH produced by KNN-BLZ obtained a record value of 865 mu W cm(-3) at 80 degrees C, which was superior to the reported value of approximately 380 mu W cm(-3) for KNN-based PEHs measured at room temperature. These results pave the way for applications of KNN-BLZ piezoceramics, and also greatly impact our understanding of the strong correlations between the thermal stability of DMC structure and temperature-dependent energy-harvesting properties.
Keyword:
Reprint Author's Address:
Email:
Source :
JOURNAL OF MATERIALS CHEMISTRY A
ISSN: 2050-7488
Year: 2023
Issue: 7
Volume: 11
Page: 3556-3564
1 1 . 9 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:26
Cited Count:
WoS CC Cited Count: 16
SCOPUS Cited Count: 16
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 12
Affiliated Colleges: