Indexed by:
Abstract:
The sulfur dioxide blower is a centrifugal blower that transports various gases in the process of acid production with flue gas. Accurate prediction of the outlet pressure of the sulfur dioxide blower is quite significant for the process of acid production with flue gas. Due to the internal structure of the sulfur dioxide blower being complex, its mechanism model is difficult to establish. A novel method combining one-dimensional convolution (Conv1D) and bidirectional gated recurrent unit (BiGRU) is proposed for short-term prediction of the outlet pressure of sulfur dioxide blower. Considering the external factors such as inlet pressure and inlet flow rate of the blower, the proposed method first uses Conv1D to extract periodic and local correlation features of these external factors and the blower's outlet pressure data. Then, BiGRU is used to overcome the complexity and nonlinearity in prediction. More importantly, genetic algorithm (GA) is used to optimize the important hyperparameters of the model. Experimental results show that the combined model of Conv1D and BiGRU optimized by GA can predict the outlet pressure of sulfur dioxide blower accurately in the short term, in which the root mean square error (RMSE) is 0.504, the mean absolute error (MAE) is 0.406, and R-square (R-2) is 0.993. Also, the proposed method is superior to LSTM, GRU, BiLSTM, BiGRU, and Conv1D-BiLSTM.
Keyword:
Reprint Author's Address:
Email:
Source :
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE
ISSN: 1687-5265
Year: 2022
Volume: 2022
ESI Discipline: NEUROSCIENCE & BEHAVIOR;
ESI HC Threshold:37
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 1
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: