Indexed by:
Abstract:
Effluent quality deterioration caused by seasonal temperature reductions in wastewater treatment systems using partial anammox technology is a challenge that cannot be ignored. Here, relationships of denitrification and anammox under decreasing temperature were investigated in an anoxic moving bed biofilm reactor (MBBR). Compared with stable partial-denitrification (NO3- -* NO2-), the NO2- reduction to N2 was considerably inhibited when the temperature decreased, conversely helping to the competition of NO2- for anammox. Namely, this transformation provided sufficient substrates for anammox bacteria. Although the TIN removal decreased slightly, anammox contribution was robustly maintained at 91.3 +/- 6.6 %, even increased. High-throughput sequencing results revealed that anammox bacteria were enriched (0.56 % to 1.22 %). Moreover, qPCR results showed that increased ratio of hzsB/(nirK + nirS) further supported anammox gained an enhancement. This study demonstrated partial-denitrification/anammox process using anoxic MBBR could maintain stable autotrophic nitrogen removal contribution when encountering temperature decrease, providing a new perspective on the application of mainstream anammox.
Keyword:
Reprint Author's Address:
Email:
Source :
BIORESOURCE TECHNOLOGY
ISSN: 0960-8524
Year: 2022
Volume: 364
1 1 . 4
JCR@2022
1 1 . 4 0 0
JCR@2022
ESI Discipline: BIOLOGY & BIOCHEMISTRY;
ESI HC Threshold:43
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 26
SCOPUS Cited Count: 31
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: