Indexed by:
Abstract:
Optimal control methods have attracted much attention for their promising performance in nonlinear systems. However, it is difficult to achieve satisfactory performance due to uncertain disturbances. To cope with this problem, a data-driven robust optimal control (DROC) method is proposed for uncertain nonlinear systems. The merits of the proposed DROC method are threefold: First, a data-driven evaluation strategy is introduced to cap-ture the relationship between the approximating errors and the control variables. Then, the control performance indexes of nonlinear systems can be established within uncertain disturbances. Second, a multi-objective robust optimization algorithm is developed with a coevolution strategy. Then, robust optimal control laws can be obtained to improve the control performance. Third, the robust boundedness of DROC is discussed in theory. Then, the stability of the control systems can be guaranteed analytically. Finally, the effec-tiveness of DROC is illustrated with two multiple input multiple output second-order non-linear systems. The optimal control performances are displayed in experiments to demonstrate the effectiveness of DROC.(c) 2022 Elsevier Inc. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
INFORMATION SCIENCES
ISSN: 0020-0255
Year: 2023
Volume: 621
Page: 248-264
8 . 1 0 0
JCR@2022
ESI Discipline: COMPUTER SCIENCE;
ESI HC Threshold:19
Cited Count:
WoS CC Cited Count: 9
SCOPUS Cited Count: 11
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: