Indexed by:
Abstract:
Deep learning technology has played an important role in our life. Since deep learning technology relies on the neural network model, it is still plagued by the catastrophic forgetting problem, which refers to the neural network model will forget what it has learned after learning new knowledge. The neural network model learns knowledge through labeled samples, and its knowledge is stored in its parameters. Therefore, many methods try to solve this problem from the perspective of constraint parameters and stored samples. There are few ways to solve this problem from the perspective of constraining features output of neural network models. This paper proposes an incremental learning method with super constraints on model parameters. This method not only calculates the parameter similarity loss of the old and new models, but also calculates the layer output feature similarity loss of the old and new models, and finally suppresses the change of model parameters from two directions. In addition, we also propose a new strategy for selecting representative samples from dataset and tackling the imbalance between stored samples and new task samples. Finally, we utilize the neural kernel mapping support vector machine theory to increase the interpretability of the model. In order to better meet the actual situation, five sample sets with different categories and amounts were employed in experiments. Experiments show the effectiveness of our method. For example, after learning the last task, our method is at least 1.930% and 0.562% higher than other methods on the training set and test set, respectively.
Keyword:
Reprint Author's Address:
Source :
INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS
ISSN: 1868-8071
Year: 2022
Issue: 5
Volume: 14
Page: 1751-1767
5 . 6
JCR@2022
5 . 6 0 0
JCR@2022
ESI Discipline: COMPUTER SCIENCE;
ESI HC Threshold:46
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 1
SCOPUS Cited Count: 1
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 11
Affiliated Colleges: