Indexed by:
Abstract:
Due to the great application potential of fractional q-difference system in physics, mechanics and aerodynamics, it is very necessary to study fractional q-difference system. The main purpose of this paper is to investigate the solvability of nonlinear fractional q-integro-difference system with the nonlocal boundary conditions involving diverse fractional q-derivatives and Riemann-Stieltjes q-integrals. We acquire the existence results of solutions for the systems by applying Schauder fixed point theorem, Krasnoselskii's fixed point theorem, Schaefer's fixed point theorem and nonlinear alternative for single-valued maps, and a uniqueness result is obtained through the Banach contraction mapping principle. Finally, we give some examples to illustrate the main results.
Keyword:
Reprint Author's Address:
Source :
FRACTAL AND FRACTIONAL
Year: 2022
Issue: 10
Volume: 6
5 . 4
JCR@2022
5 . 4 0 0
JCR@2022
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 7
SCOPUS Cited Count: 8
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: