Indexed by:
Abstract:
Up to now, there is still the absence of research about depression recognition using resting-state functional magnetic resonance imaging (rest_fMRI) and deep learning. Previous studies have shown that regional homogeneity (ReHo) of rest_fMRI (rest_ReHo_fMRI) is a characterization of the functional synchronization of adjacent voxels in brain regions, and the mental and behavioral abnormalities in depression are due to an imbalance of ReHo synchronization in some brain functional areas. Accordingly, this paper presents a method for depression recognition using rest_ReHo_fMRI. First, the rest_ReHo_fMRI is extracted from the preprocessed rest-fMRI by calculation. Then, deep convolutional networks (such as VGG16) pretrained on ImageNet are used to automatically complete extracting the classification features from rest_ReHo_fMRI. Finally, the Kernel Extreme Learning Machine (KELM) was used to classify the depression. The results of the test set show that the proposed method achieves 89.07% in sensitivity and 89.74% in specificity. This study suggests that features of rest_ReHo_fMRI can be used as biomarkers to distinguish depression from normal people.
Keyword:
Reprint Author's Address:
Email:
Source :
JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY
ISSN: 0219-5194
Year: 2021
Issue: 10
Volume: 21
0 . 8 0 0
JCR@2022
ESI Discipline: MOLECULAR BIOLOGY & GENETICS;
ESI HC Threshold:127
JCR Journal Grade:4
Cited Count:
WoS CC Cited Count: 2
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 10
Affiliated Colleges: