• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Zhang, Li (Zhang, Li.) | Hao, Shiwei (Hao, Shiwei.) | Dou, Quanhao (Dou, Quanhao.) | Dong, Tingjun (Dong, Tingjun.) | Qi, Wei Kang (Qi, Wei Kang.) | Huang, Xiaowu (Huang, Xiaowu.) | Peng, Yongzhen (Peng, Yongzhen.) | Yang, Jiachun (Yang, Jiachun.)

Indexed by:

EI Scopus SCIE

Abstract:

Significant progress in understanding the key enzymes or species of anammox has been made; however, the nitrogen removal mechanism in complex coupling systems centered on anammox remains limited. In this study, by the combination of metagenomics-metatranscriptomics analyses, the nitrogen removal in the anammox-centered coupling system that entails partial denitrification (PD) and hydrolytic acidification (HA, A-PDHA) was elucidated to be the nitrogen transformation driven by the electron generation-transport-consumption process. The results showed that a total nitrogen (TN) removal efficiency of >98%, with a TN effluence of <1 mg/L and a TN removal contribution via anammox of >98%, was achieved after 59 days under famine operation and alkaline conditions during the start-up process. Further investigation confirmed that famine operation promoted the activity of genes responsible for electron generation in anammox, and increased the abundance or expression of genes related to electron consumption. Alkaline conditions enhanced the electron generation for PD by upregulating the activity of glyceraldehyde 3-phosphate dehydrogenase and strengthened electron transfer by increasing the gene encoding quinone pool. Altogether, these variations in the electron flow led to efficient nitrogen removal. These results improve our understanding of the nitrogen removal mechanism and application of the anammox-centered coupling systems in treating nitrogen wastewater.

Keyword:

anammox partial denitrification hydrolytic acidification metagenomic sequencing metatranscriptomic sequencing

Author Community:

  • [ 1 ] [Zhang, Li]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment &, Key Lab Beijing Water Qual Sci & Water Environm Re, Beijing 100124, Peoples R China
  • [ 2 ] [Hao, Shiwei]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment &, Key Lab Beijing Water Qual Sci & Water Environm Re, Beijing 100124, Peoples R China
  • [ 3 ] [Dou, Quanhao]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment &, Key Lab Beijing Water Qual Sci & Water Environm Re, Beijing 100124, Peoples R China
  • [ 4 ] [Dong, Tingjun]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment &, Key Lab Beijing Water Qual Sci & Water Environm Re, Beijing 100124, Peoples R China
  • [ 5 ] [Qi, Wei Kang]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment &, Key Lab Beijing Water Qual Sci & Water Environm Re, Beijing 100124, Peoples R China
  • [ 6 ] [Peng, Yongzhen]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment &, Key Lab Beijing Water Qual Sci & Water Environm Re, Beijing 100124, Peoples R China
  • [ 7 ] [Huang, Xiaowu]Guangdong Technion Israel Inst Technol, Environm Sci & Engn Program, Shantou 515063, Guangdong, Peoples R China
  • [ 8 ] [Yang, Jiachun]Shuifa Shandong Water Dev Grp Co Ltd, Jinan 274200, Shandong, Peoples R China

Reprint Author's Address:

Show more details

Related Keywords:

Source :

ENVIRONMENTAL SCIENCE & TECHNOLOGY

ISSN: 0013-936X

Year: 2022

1 1 . 4

JCR@2022

1 1 . 4 0 0

JCR@2022

ESI Discipline: ENVIRONMENT/ECOLOGY;

ESI HC Threshold:47

JCR Journal Grade:1

CAS Journal Grade:1

Cited Count:

WoS CC Cited Count: 27

SCOPUS Cited Count: 32

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 7

Affiliated Colleges:

Online/Total:705/10811009
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.