Indexed by:
Abstract:
Human brain effective connectivity characterizes the causal effects of neural activities among different brain regions. Studies of brain effective connectivity networks (ECNs) for different populations contribute significantly to the understanding of the pathological mechanism associated with neuropsychiatric diseases and facilitate finding new brain network imaging markers for the early diagnosis and evaluation for the treatment of cerebral diseases. A deeper understanding of brain ECNs also greatly promotes brain-inspired artificial intelligence (AI) research in the context of brain-like neural networks and machine learning. Thus, how to picture and grasp deeper features of brain ECNs from functional magnetic resonance imaging (fMRI) data is currently an important and active research area of the human brain connectome. In this survey, we first show some typical applications and analyze existing challenging problems in learning brain ECNs from fMRI data. Second, we give a taxonomy of ECN learning methods from the perspective of computational science and describe some representative methods in each category. Third, we summarize commonly used evaluation metrics and conduct a performance comparison of several typical algorithms both on simulated and real datasets. Finally, we present the prospects and references for researchers engaged in learning ECNs.
Keyword:
Reprint Author's Address:
Email:
Source :
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
ISSN: 2162-237X
Year: 2021
Issue: 4
Volume: 34
Page: 1879-1899
1 0 . 4 0 0
JCR@2022
ESI Discipline: COMPUTER SCIENCE;
ESI HC Threshold:87
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 29
SCOPUS Cited Count: 27
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: