Indexed by:
Abstract:
This article presents the adaptive tracking control scheme of nonlinear multiagent systems under a directed graph and state constraints. In this article, the integral barrier Lyapunov functionals (iBLFs) are introduced to overcome the conservative limitation of the barrier Lyapunov function with error variables, relax the feasibility conditions, and simultaneously solve state constrained and coupling terms of the communication errors between agents. An adaptive distributed controller was designed based on iBLF and backstepping method, and iBLF was differentiated by means of the integral mean value theorem. At the same time, the properties of neural network are used to approximate the unknown terms, and the stability of the systems is proven by the Lyapunov stability theory. This scheme can not only ensure that the output of all the followers meets the output trajectory of the leader but also make the state variables not violate the constraint bounds, and all the closed-loop signals are bounded. Finally, the efficiency of the proposed controller is revealed.
Keyword:
Reprint Author's Address:
Email:
Source :
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
ISSN: 2162-237X
Year: 2021
Issue: 8
Volume: 34
Page: 4544-4554
1 0 . 4 0 0
JCR@2022
ESI Discipline: COMPUTER SCIENCE;
ESI HC Threshold:87
JCR Journal Grade:1
Cited Count:
WoS CC Cited Count: 21
SCOPUS Cited Count: 31
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 9
Affiliated Colleges: