Indexed by:
Abstract:
Intense studies are being carried out on single atom catalysts that exhibit remarkable activity and selectivity. To enhance their catalytic abilities, one must have a thorough understanding of the properties of the single metal atom active site and its dynamics in the working state. Herein, we report single metal atom oxide (SMAO) (metal: W/Cu) anchored on TiO2-rGO nanomaterials (SMAO-ED-TiO2-rGO) by simple sonication process. It is efficient for the electrocatalytic hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and photocatalytic degradation of pharmaceutical pollutant. The uniform dispersion of the tungsten/copper metal atom oxide over a TiO2-rGO materials is detected by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). The SMAO-ED-TiO2-rGO nanocatalyst has shown impressive HER/OER activity with an overpotential of 121/295 mV at (-)10 mA cm-2 current density and the low Tafel slope of 96/60.3 mV dec- 1 in 1 M KOH solution. Further, SMAO-ED-TiO2-rGO nanocatalyst was used for the photocatalytic degradation of ciprofloxacin (CF). After 60 min of UV light irradiation, the SMAO-ED-TiO2-rGO nanocatalyst efficiently photodegraded 98.5% of CF while retaining its activity for five cycles. Superoxide radicals (O2 center dot-) are found to be the
Keyword:
Reprint Author's Address:
Source :
CHEMOSPHERE
ISSN: 0045-6535
Year: 2022
Volume: 314
8 . 8
JCR@2022
8 . 8 0 0
JCR@2022
ESI Discipline: ENVIRONMENT/ECOLOGY;
ESI HC Threshold:47
JCR Journal Grade:1
CAS Journal Grade:2
Cited Count:
WoS CC Cited Count: 14
SCOPUS Cited Count: 16
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: