Indexed by:
Abstract:
Objective: Pompe disease is a lysosomal glycogen storage disease caused by acid a-glucosidase (GAA) deficiency, which is characterized by glycogen accumulation in the heart, skeletal muscle, and central nervous system (CNS). AAV vector-mediated gene therapy is expected to be a breakthrough in the treatment of Pompe disease. In this study, AAV9 vector was used to mediate GAA gene transfer in Pompe disease model mice, and the changes of GAA protease activity, glycogen accumulation in tissues and pathological changes in mice after transgenic intervention were evaluated. Methods: Codon optimized GAA gene (coGAA) was carried by AAV9 vector, and the AAV vector was packaged by baculovirus production process. Adult Pompe model mice were given a single intravenous injection at the dose of 1. 1 x 10-3, 3.0 x 10-3, 1.2 x 10-4 vg/kg, and aged Pompe model mice were given a single intravenous injection at the dose of 3. 0 x 10-3 vg/kg. After reaching the end point of the experiment, the mice were euthanized, GAA protease activity was determined by fluorescence spectrophotometry, glycogen accumulation was observed by PAS staining, and pathological changes were detected by HE staining. Results: Five weeks after administration, GAA protein was widely expressed in al tissues of adult model mice, with higher expression levels in heart and liver, and lower expression levels in brain and spinal cord. After rAAV9-coGAA treatment, glycogen content in myocardium, skeletal muscle and brain decreased, ad vacuolar degeneration in myocardium ad skeletal muscle decreased significantly. After treatment, the tissue enzyme activity of the aged animals was significantly increased compared with that of the model mice. The vacuolar degeneration and inflammatory cell infiltration of the myocardium were decreased, but the pathological improvement of skeletal muscle was limited. Conclusion: A single intravenous injection of rAAV9-coGAA can enhance GAA enzyme activity, reduce glycogen accumulation and improve pathology in Pompe model mice. The therapeutic effect was dose-dependent, and the injection also had certain therapeutic effect on aged animals. This study laid a theoretical foundation for the clinical application of AAV9 mediated gene therapy via intravenous route in Pompe disease. © 2022, China Biotechnology Press. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
China Biotechnology
ISSN: 1671-8135
Year: 2022
Issue: 7
Volume: 42
Page: 24-34
Cited Count:
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: