• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Yang, Weiwei (Yang, Weiwei.) | Ruan, Jiageng (Ruan, Jiageng.) | Yang, Jue (Yang, Jue.) | Zhang, Nong (Zhang, Nong.)

Indexed by:

EI Scopus SCIE

Abstract:

Transportation sector is one of the major sources of pollutants as it contributes more than 80% of CO, while almost all HC and 90% of NOx and PM. Although battery electric vehicles are well-known for reducing environmental pollution, the driving range and battery lifespan put a significant barrier to its large-scale commercialization. In this study, an integrated system, which includes an uninterrupted dual input transmission and hybrid energy storage system, is proposed to improve energy efficiency and extend battery lifespan. Given the limitations of dynamic programming in practice, a real-time optimal control strategy is designed to evaluate the power loss and battery capacity degradation of the proposed integrated system based on detailed mathematical models of individual powertrain components. To achieve a desirable trade-off between battery degradation, energy consumption, and acquisition cost, a mixed-integer multi-objective genetic algorithm is implemented to optimize the parameters of the hybrid energy storage system, while Pareto principal is adopted to find the proper solution according to different purposes. The simulation results reveal that the proposed integrated system shows the potential of saving 15.85%-20.82% of the energy consumption in typical driving cycles and more than 22.61%-31.11% Life-cycle cost compared with the single-ratio transmission-based battery electric vehicles. The selected Pareto front can further enhance Life-cycle cost from 26.53% to 28.13% in the HWFET cycle. It can be concluded that the integrated uninterrupted dual input transmission and hybrid energy storage system not only can improve motor efficiency and reduce energy consumption, it also can extend the battery lifespan to decrease Life-cycle cost compared to conventional single-ratio battery-only EV.

Keyword:

Hybrid energy storage system Uninterrupted dual input transmission Battery capacity degradation Life-cycle cost Mixed-integer multi-objective genetic algorithm

Author Community:

  • [ 1 ] [Yang, Weiwei]Univ Sci & Technol Beijing, Sch Mech Engn, Beijing, Peoples R China
  • [ 2 ] [Yang, Jue]Univ Sci & Technol Beijing, Sch Mech Engn, Beijing, Peoples R China
  • [ 3 ] [Ruan, Jiageng]Beijing Univ Technol, Beijing, Peoples R China
  • [ 4 ] [Zhang, Nong]Univ Technol Sydney, Fac Engn & IT, Sydney, NSW, Australia

Reprint Author's Address:

  • [Ruan, Jiageng]Beijing Univ Technol, Beijing, Peoples R China

Email:

Show more details

Related Keywords:

Source :

APPLIED ENERGY

ISSN: 0306-2619

Year: 2020

Volume: 262

1 1 . 2 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:115

Cited Count:

WoS CC Cited Count: 25

SCOPUS Cited Count: 30

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 11

Affiliated Colleges:

Online/Total:907/10660630
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.