Abstract:
滚动轴承的故障信号一般具有非平稳、非线性的特点,通过时频分析可以得到信号中频率随时间的变化关系,有利于识别故障特征.提出了使用DeepLabV3+网络识别时频分布中故障特征的方法,对采集到的滚动轴承振动信号使用短时傅里叶变换得到时频分布,对时频分布中故障区域使用labelme进行标注;将振动信号数据集划分为训练集、验证集和测试集,训练集和验证集用来训练DeepLabV3+网络模型并调整其中的超参数,测试集用来测试网络的泛化能力.使用滚动轴承模拟信号与试验信号对提出的方法进行验证,结果表明该方法可以成功识别滚动轴承的故障特征.
Keyword:
Reprint Author's Address:
Email:
Source :
轴承
ISSN: 1000-3762
Year: 2023
Issue: 2
Page: 74-81
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: