• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Zhao, Mi (Zhao, Mi.) (Scholars:赵密) | Gao, Zhi-Dong (Gao, Zhi-Dong.) | Du, Xiu-Li (Du, Xiu-Li.) (Scholars:杜修力) | Wang, Jun-Jie (Wang, Jun-Jie.)

Indexed by:

EI Scopus PKU CSCD

Abstract:

The direct finite element method is a widely used time history method for seismic soil-structure interaction (SSI) analysis. In this method, the viscous-spring boundary condition is used to model the radiation damping of infinite domain, and the seismic site response is transformed into the equivalent loading. When the soil layer is extraordinary thick, the computational efficiency of seismic SSI analysis especially for three-dimensional problem is very low due to the finite element model of the whole deep soil layer. In this paper, an efficient analysis scheme is developed. In which, the one-dimensional site response analysis is still performed for the whole deep soil layer, and subsequently the bottom artificial boundary of SSI model is moved up from the actual soil layer bottom (bedrock surface) to the location sufficiently near the structure. The theoretical analyses and numerical examples are presented to indicate the accuracy and efficiency of the proposed efficient analysis scheme. The different boundary treatments and seismic inputs at different locations of the moved bottom boundary are compared with the finite element model of the whole deep soil layer. The proposed scheme meets the precision requirements, and some suggestions on artificial boundary treatment and location are given. © 2019, Engineering Mechanics Press. All right reserved.

Keyword:

Soils Numerical methods Soil structure interactions Computational efficiency Location Finite element method One dimensional Efficiency Boundary conditions Seismology

Author Community:

  • [ 1 ] [Zhao, Mi]Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Gao, Zhi-Dong]Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Du, Xiu-Li]Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Wang, Jun-Jie]College of Civil Engineering, Tongji University, Shanghai; 200092, China

Reprint Author's Address:

  • 赵密

    [zhao, mi]key laboratory of urban security and disaster engineering of ministry of education, beijing university of technology, beijing; 100124, china

Show more details

Related Keywords:

Source :

Engineering Mechanics

ISSN: 1000-4750

Year: 2019

Issue: 10

Volume: 36

Page: 58-65

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count: 6

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 7

Online/Total:448/10569567
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.