Abstract:
机器阅读理解任务在近年来备受关注,它赋予计算机从文本数据中获取知识和回答问题的能力.如何让机器理解自然语言是人工智能领域长期存在的挑战之一,近年来大规模高质量数据集的发布和深度学习技术的运用,使得机器阅读理解取得了快速发展.基于神经网络的端到端的模型结构,基于预训练语言模型以及推理技术的应用,其性能在大规模评测数据集上有很大提升,但距离真正的理解语言还有较大差距.本文对机器阅读理解任务的研究现状与发展趋势进行了综述,主要包括任务划分、机器阅读理解模型与相关技术的分析,特别是基于知识推理的机器阅读理解技术,总结并讨论了该领域的发展趋势.
Keyword:
Reprint Author's Address:
Email:
Source :
智能系统学报
ISSN: 1673-4785
Year: 2022
Issue: 6
Volume: 17
Page: 1074-1083
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 13
Affiliated Colleges: