Abstract:
行程时间预测是支撑高速公路交通运行评价、行车诱导、交通智能化管控等应用的关键技术,在高速公路交通大数据日渐丰富的背景下,如何保障高效、准确的行程时间预测结果值得关注.为弥补现有预测数据单一、实时性不佳等问题,文中提出一种基于LightGBM(Light Gradient Boosting Machine)算法和路警数据融合的行程时间预测模型,基于多源数据,构建交通量、大车占比、天气、日期类型、车型、路段长度、平均行程时间等多维特征集;利用山东济广(济南—广州)高速公路ETC(电子不停车收费系统)门架系统(出入口收费站和路段ETC门架)、视频卡口等数据进行行程时间预测模型训练与验证,采用均方根误差RMSE、平均绝对误差MAE、平均绝对百分比误差MAPE及运算时间4项评价指标对该模型与最邻近(KNN)、随机森林(RF)、支持向量机回归(SVR)3种常用机器学习算法的预测结果进行对比,结果表明采用该模型,4个验证路段的RMSE为5.78,分别比KNN、RF、SVR模型降低22.8%、13.5%、21.0%,运算速度分别提高-60%、98%、96%,可应用于高速公路网实时行程时间预测,并支持面向不同车型的差异化行程时间信息服务.
Keyword:
Reprint Author's Address:
Email:
Source :
公路与汽运
ISSN: 1671-2668
Year: 2022
Issue: 6
Page: 13-19,31
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 22
Affiliated Colleges: