Indexed by:
Abstract:
Photoreduction of CO2 into value-added fuels under mild conditions is a promising route to relieve the pressure from extensive CO2 emission and energy consumption, but the rational design of novel photocatalysts for efficient CO2 reduction remains a big challenge. Herein, a series of transition metal doped In2O3/C (M = Fe, Cu, and Zn) photocatalysts are prepared based on a bimetallic metal-organic framework template, where the rearrangement of electron density distribution is facilely achieved via doping metal atoms. Correspondingly, the broadened light-harvesting scope, charge transfer rate, and produced intermediates in photocatalytic CO2 reduction can be optimized. In particular, Cu-In2O3/C exhibits a largely improved CO yield with a high selectivity, which is superior to that of most of the previously reported photocatalysts derived from MOFs. This work thus provides an efficient approach for tailoring the electronic structure of photocatalysts, which shows promising applications in carbon cycling.
Keyword:
Reprint Author's Address:
Email:
Source :
JOURNAL OF MATERIALS CHEMISTRY A
ISSN: 2050-7488
Year: 2023
Issue: 24
Volume: 11
Page: 12950-12957
1 1 . 9 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:26
Cited Count:
WoS CC Cited Count: 19
SCOPUS Cited Count: 20
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: