• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Qiao, Junfei (Qiao, Junfei.) | Li, Dapeng (Li, Dapeng.) | Han, Honggui (Han, Honggui.)

Indexed by:

EI Scopus SCIE

Abstract:

Wastewater treatment process (WWTP), consisting of a class of physical, chemical, and biological phenomena, is an important means to reduce environmental pollution and improve recycling efficiency of water resources. Considering characteristics of the complexities, uncertainties, nonlinearities, and multitime delays in WWTPs, an adaptive neural controller is presented to achieve the satisfying control performance for WWTPs. With the advantages of radial basis function neural networks (RBF NNs), the unknown dynamics in WWTPs are identified. Based on the mechanistic analysis, the time-varying delayed models of the denitrification and aeration processes are established. Based on the established delayed models, the Lyapunov-Krasovskii functional (LKF) is used to compensate for the time-varying delays caused by the push-flow and recycle flow phenomenon. The barrier Lyapunov function (BLF) is used to ensure that the dissolved oxygen (DO) and nitrate concentrations are always kept within the specified ranges though the time-varying delays and disturbances exist. Using Lyapunov theorem, the stability of the closed-loop system is proven. Finally, the proposed control method is carried out on the benchmark simulation model 1 (BSM1) to verify the effectiveness and practicability.

Keyword:

Lyapunov-Krasovskii functional (LKF) wastewater treatment process (WWTP) Adaptive neural network control (ANNC) barrier Lyapunov function (BLF) input saturation

Author Community:

  • [ 1 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Dapeng]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing, Peoples R China

Reprint Author's Address:

  • [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;

Show more details

Related Keywords:

Source :

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

ISSN: 2162-237X

Year: 2023

Issue: 8

Volume: 35

Page: 10687-10697

1 0 . 4 0 0

JCR@2022

ESI Discipline: COMPUTER SCIENCE;

ESI HC Threshold:19

Cited Count:

WoS CC Cited Count: 3

SCOPUS Cited Count: 4

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 5

Affiliated Colleges:

Online/Total:1270/10841971
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.