• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Li, Chuan (Li, Chuan.) | Li, Qi (Li, Qi.) | Ge, Ruihuan (Ge, Ruihuan.)

Indexed by:

EI Scopus SCIE

Abstract:

This work concerns the melting performance enhancement in a finned shell and tube thermal energy storage device containing salt based phase change materials. Two storage materials of a pure nitrate salt and a nitrate salt based composite that made of nitrate salt, vermiculite and graphite were employed and comparatively investigated. A two-dimensional mathematical model was established to predict the heat transfer occurred in the salts by considering the combined impacts of natural convection and thermal conduction. A set of simulation data from literature was used to verify the modelling code for the pure salt and an experiment was built to validate the numerical model for the salt composite. The effects of fin amount, arrangement, length and thickness as well as operating condition on the device melting behaviour were detailedly eval-uated. The results indicated the benefit of employment fins in accelerating the salt melting rate. The use of salt based composite combined with enhanced fins led to a more remarkable improvement on the device melting process, and the adjustment of fin length and thickness as well as composite ingredients composition achieved further intensification. For a given fin amounts over 0-8 with the same neighbour angle, the melting process in the device containing salt composite is respectively shortened around 79% and 56% compared to the device containing pure salt, indicating the utilization of composite is a better choice than the pure salt for the performance enhancement in finned shell and tube thermal energy storage device.

Keyword:

Molten salt Thermal energy storage Shell and tube Performance enhancement Composite phase change material

Author Community:

  • [ 1 ] [Li, Chuan]Shandong Univ Technol, Sch Chem & Chem Engn, Zibo 255049, Peoples R China
  • [ 2 ] [Li, Qi]Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conser, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 3 ] [Ge, Ruihuan]Univ Sheffield, Dept Chem & Biol Engn, Sheffield S10 2TN, England

Reprint Author's Address:

  • [Li, Qi]Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conser, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China;;

Show more details

Related Keywords:

Source :

CASE STUDIES IN THERMAL ENGINEERING

ISSN: 2214-157X

Year: 2023

Volume: 43

6 . 8 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:19

Cited Count:

WoS CC Cited Count: 8

SCOPUS Cited Count: 9

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 12

Affiliated Colleges:

Online/Total:748/10578268
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.