Indexed by:
Abstract:
Successful construction of heterojunction can improve the utilization efficiency of solar light by broadening the absorption range, facilitating charge-carrier separation, promoting carrier transportation and influencing surface-interface reaction. Herein, visible-light-driven AgBr was deposited on the surface of lamellar BiVO4 which was prepared by a facile hydrothermal process to improve charge carrier separation, and subsequent photocatalytic effectiveness. The catalyst with an optimal AgBr/BiVO4 ratio exhibited a superbly enhanced photocatalytic decolorization ability (about 6.85 times higher than that of pure BiVO4) and high stability after four cycles. The unique photocatalytic mechanism of S-scheme carrier migration was investigated on the bases of radical trapping tests and photo/electrochemical characterizations. Results showed that the enhanced migration strategy and intimately interfacial collaboration guaranteed the effective charge carriers separation/transfer, leading to magnificent photocatalytic performance as well as excellent stability.
Keyword:
Reprint Author's Address:
Source :
NANOTECHNOLOGY
ISSN: 0957-4484
Year: 2023
Issue: 21
Volume: 34
3 . 5 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:26
Cited Count:
WoS CC Cited Count: 6
SCOPUS Cited Count: 6
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 14
Affiliated Colleges: