Indexed by:
Abstract:
The poor heat transfer performance of the heat exchanger leads to low heat storage efficiency of the latent heat storage device. To improve the heat transfer performance of the heat exchanger, a novel annular fin with inclined angle is proposed to enhance heat transfer of the heat exchanger. 12 fins with different structural parameters are designed and welded to the inner tube wall of the heat exchanger. The simulation model is in good agreement with the literature and the model is considered to be reliable. Based on the enthalpy-porosity model, the liquid fraction, temperature distribution, melting front, energy storage density and heat storage rate were used to compare and optimize the structural parameters of the annular fins. Results demonstrated that the difference in complete melting time due to the number of fins, fin arrangement, fin length and fin angle were 43 min, 85 min, 17 min and 10 min, respectively. The fin arrangement was the most significant in reducing the heat storage time. Compared to N = 4 and uniformly distributed fins, non-uniformly distributed fins reduced the total melting time of stearic acid by 53.13 % and 20.54 %. To be conclusive, the addition of non-uniformly distributed annular fins with 70° inclination enhanced the heat transfer in the heat exchanger and saved a significant amount of heat storage time. © 2023 Elsevier Ltd
Keyword:
Reprint Author's Address:
Email:
Source :
Journal of Energy Storage
ISSN: 2352-152X
Year: 2023
Volume: 64
9 . 4 0 0
JCR@2022
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 10
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: