Abstract:
为解决多无人机(unmanned aerial vehicle,UAV)在复杂环境下的路径规划问题,提出一个多智能体深度强化学习UAV路径规划框架.该框架首先将路径规划问题建模为部分可观测马尔可夫过程,采用近端策略优化算法将其扩展至多智能体,通过设计UAV的状态观测空间、动作空间及奖赏函数等实现多UAV无障碍路径规划;其次,为适应UAV搭载的有限计算资源条件,进一步提出基于网络剪枝的多智能体近端策略优化(network pruning-based multi-agent proximal policy optimization,NP-MAPPO)算法,提高了训练效率.仿真结果验证了提出的多UAV路径规划框架在各参数配置下的有效性及NP-MAPPO算法在训练时间上的优越性.
Keyword:
Reprint Author's Address:
Email:
Source :
北京工业大学学报
ISSN: 0254-0037
Year: 2023
Issue: 4
Volume: 49
Page: 449-458
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: