Indexed by:
Abstract:
To achieve a design with the desired stiffness, strength, and durability at the component level, topology optimization has been practiced and was effective in the design of sustainable products, by autumnally allocating the available material within the design domain to form the shortest loading path. In the conceptual phase, this paper proposed a design methodology using topology optimization technique for lightweight design of a tripod structure - a typical form of foundation for offshore wind turbines (OWTs). The minimum compliance subject to prescribed volume percentage is formulated and an innovative tripod structure is generated by interoperating the optimized structure. To facilitate comparison, a tripod structure of a 5 MW OWT is referenced. The system performances are comprehensively and synthetically assessed, encompassing the natural frequency, maximum von Mises stress in ultimate load cases and cumulative fatigue damage. It is discovered that the total mass of the novel design is substantially less than that of the reference structure. In contrast, the fatigue resistance has been significantly enhanced. These finding reveal conclusively that the proposed topology optimization approach is capable of generating novel designs, reducing weight and alleviating fatigue damage. © 2023
Keyword:
Reprint Author's Address:
Email:
Source :
Ocean Engineering
ISSN: 0029-8018
Year: 2023
Volume: 280
5 . 0 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:19
Cited Count:
SCOPUS Cited Count: 27
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 4
Affiliated Colleges: