Indexed by:
Abstract:
CO2 photoreduction is warmly embraced as a promising strategy to attain carbon neutrality, with natural photosynthesis constituting a valuable source of inspiration for catalyst design. Herein, an In2O3@ZIF-67 artificial photosynthetic nanoreactor was constructed by growing ZIF-67 on the interior and exterior of MIL-68(In)-derived hollow In2O3 prisms via potential nonclassical crystallization pathway(s), forming an efficient double heterostructure with separated reaction centers and prompt electron transfers. With the introduction of [Ru(bpy)3]2+ photosensitizer, the nanoreactor possesses two antennae to harvest visible light. Additionally, the macroscopic architecture permits enhanced light and photosensitizer utilization, while ZIF-67 facilitates the capture of CO2. Collectively, the developed nanoreactor exhibits a remarkable CO production rate of 33420 µmol g−1h−1 with the diminished quantity of the photosensitizer. Moreover, the hydrophobicity of the nanoreactor is found to suppress the side product of H2 and elevate CO selectivity to 94%, further demonstrating the superiority of its exquisite design. © 2023 Elsevier B.V.
Keyword:
Reprint Author's Address:
Email:
Source :
Chemical Engineering Journal
ISSN: 1385-8947
Year: 2023
Volume: 467
1 5 . 1 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:19
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 35
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 6
Affiliated Colleges: