Indexed by:
Abstract:
To improve the power density of fast-response and easily controlled eddy current brakes for heavy-duty vehicles, the method of constructing a three-dimensional magnetic circuit by using axially convex toothed coils and overexcitation design technology are proposed. Based on the finite element method, the steady-state and quasi-steady-state electromagnetic field calculation models of the novel high-energy eddy current brake and two traditional eddy current brakes are established, and their magnetic circuit, air gap magnetic density, eddy current distribution and overexcitation braking characteristics are analyzed. The results show that the eddy current of the novel high-energy eddy current brake is distributed in the whole axial space on the inner surface of the rotor. When the speed is less than 3 500 r / min, its braking torque is significantly higher than the other two traditional eddy current brakes. And the overexcitation design can effectively improve the braking performance. Since the coil current density is increased to 3 times, the braking torque is increased by 0. 65 times, which can provide instantaneous high torque for vehicle emergency braking and shorten the braking distance of the vehicle by 30% . © 2023 China Ordnance Society. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
Acta Armamentarii
ISSN: 1000-1093
Year: 2023
Issue: 1
Volume: 44
Page: 290-297
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 5
Affiliated Colleges: