Abstract:
随着车联网(IoV)的快速发展及部署,用户对网络服务质量的要求也随之提高。车联网数据计算作为网络服务的重要内容之一,越来越受到关注。移动边缘计算(MEC)作为一种允许车辆将计算任务卸载到车联网系统边缘服务器的技术,能够有效降低计算时延,提升数据处理效率。然而,车联网的数据流量日益增加,导致边缘计算设备的需求量大幅提高且存在数据安全可靠性问题。对此,本文面向车联网中移动车辆计算卸载的场景,提出一种基于区块链的停放车辆辅助计算的系统模型。通过联合考虑服务器计算资源、车辆机动性等条件,利用深度强化学习(DRL)对计算卸载和资源分配策略进行优化,减少系统能耗和数据传输时延,并提高区块链系统的交易吞吐量。仿真结果表明,本文所提优化方法可以有效提升系统性能,同时具有良好的收敛性能和稳定性。
Keyword:
Reprint Author's Address:
Email:
Source :
高技术通讯
Year: 2023
Issue: 04
Volume: 33
Page: 390-401
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 70
Affiliated Colleges: