Indexed by:
Abstract:
Cadmium sulfide (CdS) is a photocatalyst widely used for efficient H-2 production under visible light irradiation, due to its narrow bandgap and suitable conduction band position. However, the fast recombination of carriers results in their low utilization. In order to improve photocatalytic hydrogen production, it reports the successful introduction of metallic Cd and S vacancies on CdS nanorods (CdS NRs) by a facile in situ chemical reduction method, using a thermal treatment process. This procedure generates interfacial and polarization electric fields, that significantly improve the photocatalytic hydrogen production performance of CdS NRs in sodium sulfide and sodium sulfite aqueous solutions, under visible light irradiation (& lambda; >420 nm). The introduction of these electric fields is believed to improve charge separation and facilitate faster interfacial charge migration, resulting in a significantly optimized catalyst, with a photocatalytic hydrogen evolution rate of up to 10.6 mmol(-1) g(-1) h(-1) with apparent quantum efficiency (AQE) of 12.1% (420 nm), which is 8.5 times higher than that of CdS. This work provides a useful method to introduce metallic and S vacancies on metal sulfide photocatalysts to build local polarization and interfacial electric fields for high-performance photocatalytic H-2 production.
Keyword:
Reprint Author's Address:
Source :
SMALL
ISSN: 1613-6810
Year: 2023
Issue: 46
Volume: 19
1 3 . 3 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:26
Cited Count:
WoS CC Cited Count: 65
SCOPUS Cited Count: 68
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 12
Affiliated Colleges: