Indexed by:
Abstract:
Deep learning has been applied to the recognition of motor imagery electroencephalograms (MI-EEG) in brain-computer interface, and the performance results depend on data representation as well as neural network structure. Especially, MI-EEG is so complex with the characteristics of non-stationarity, specific rhythms, and uneven distribution; however, its multidimensional feature information is difficult to be fused and enhanced simultaneously in the existing recognition methods. In this paper, a novel channel importance (NCI) based on time-frequency analysis is proposed to develop an image sequence generation method (NCI-ISG) for enhancing the integrity of data representation and highlighting the contribution inequalities of different channels as well. Each electrode of MI-EEG is converted to a time-frequency spectrum by utilizing short-time Fourier transform; the corresponding part to 8-30 Hz is combined with random forest algorithm for computing NCI; and it is further divided into three sub-images covered by alpha (8-13 Hz), beta(1) (13-21 Hz), and beta(2) (21-30 Hz) bands; their spectral powers are further weighted by NCI and interpolated to 2-dimensional electrode coordinates, producing three main sub-band image sequences. Then, a parallel multi-branch convolutional neural network and gate recurrent unit (PMBCG) is designed to successively extract and identify the spatial-spectral and temporal features from the image sequences. Two public four-class MI-EEG datasets are adopted; the proposed classification method respectively achieves the average accuracies of 98.26% and 80.62% by 10-fold cross-validation experiment; and its statistical performance is also evaluated by multi-indexes, such as Kappa value, confusion matrix, and ROC curve. Extensive experiment results show that NCI-ISG + PMBCG can yield great performance on MI-EEG classification compared to state-of-the-art methods. The proposed NCI-ISG can enhance the feature representation of time-frequency-space domains and match well with PMBCG, which improves the recognition accuracies of MI tasks and demonstrates the preferable reliability and distinguishable ability.
Keyword:
Reprint Author's Address:
Email:
Source :
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
ISSN: 0140-0118
Year: 2023
Issue: 8
Volume: 61
Page: 2013-2032
3 . 2 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:19
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: