Indexed by:
Abstract:
The traditional bottom liquid-cooling thermal management system (TMS) has poor cooling performance and is prone to causing significant temperature difference in the lithium-ion battery (LIB) module. In order to solve the above problems, this study takes the Z-shaped micro heat pipe array (MHPA) as the core heat transfer element and establishes a top liquid-cooling (TLC) TMS based on Z-shaped MHPA. The thermal management performance of the TLC TMS based on Z-shaped MHPA is analyzed by comparing it with the traditional bottom liquid-cooling TMS. Results show that under the conditions of 40 & DEG;C ambient temperature and 25 & DEG;C cold water inlet tem-perature, the bottom liquid-cooling TMS can no longer meet the thermal management requirements of the module at a 2C charge-discharge rate. In comparison, the TLC TMS based on Z-shaped MHPA can ensure the module's maximum temperature below 55 & DEG;C, and the battery and module level's temperature difference can be controlled below 4 & DEG;C under 3C charge-discharge rate. The TLC TMS based on Z-shaped MHPA can not only effectively delay the battery's temperature rise under high charge-discharge rate, but also significantly reduce the temperature difference; its thermal management performance is significantly better than the bottom liquid-cooling TMS.
Keyword:
Reprint Author's Address:
Email:
Source :
ENERGY
ISSN: 0360-5442
Year: 2023
Volume: 282
9 . 0 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:19
Cited Count:
WoS CC Cited Count: 6
SCOPUS Cited Count: 14
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 10
Affiliated Colleges: