• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Hong, Chen (Hong, Chen.) | Ji, Changwei (Ji, Changwei.) | Wang, Shuofeng (Wang, Shuofeng.) | Xin, Gu (Xin, Gu.) | Wang, Zizheng (Wang, Zizheng.) | Meng, Hao (Meng, Hao.) | Yang, Jinxin (Yang, Jinxin.)

Indexed by:

EI Scopus SCIE

Abstract:

Variable valve timing (VVT) and Miller cycle are advanced technologies employed to optimize engine performance by improving airflow exchange, which are seldom investigated based on the direct-injection (DI) hydrogen engine. The objective of this study is to assess the effects of intake valve closing (IVC) and exhaust valve opening (EVO) timing on the gas exchange performance, combustion, and emissions of a DI hydrogen engine, after which a synergistic control strategy of IVC and EVO timing is proposed. This work is conducted under wide-open throttle and 1500 rpm. The results indicate that the synergistic control of IVC and EVO timing can increase volumetric efficiency by more than 40%, enhance gas exchange performance, shorten combustion duration, and reduce cyclic variation, resulting in approximately 43.15% brake thermal efficiency. Furthermore, brake mean effective pressure can be increased by more than 60% and NO emissions are controlled to less than 20 ppm by optimizing valve timings.& COPY; 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.

Keyword:

VVT Miller cycle Gas exchange performance DI hydrogen engine

Author Community:

  • [ 1 ] [Hong, Chen]Beijing Univ Technol, Coll Energy & Power Engn, Beijing Lab New Energy Vehicles, Beijing 100124, Peoples R China
  • [ 2 ] [Ji, Changwei]Beijing Univ Technol, Coll Energy & Power Engn, Beijing Lab New Energy Vehicles, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Shuofeng]Beijing Univ Technol, Coll Energy & Power Engn, Beijing Lab New Energy Vehicles, Beijing 100124, Peoples R China
  • [ 4 ] [Xin, Gu]Beijing Univ Technol, Coll Energy & Power Engn, Beijing Lab New Energy Vehicles, Beijing 100124, Peoples R China
  • [ 5 ] [Meng, Hao]Beijing Univ Technol, Coll Energy & Power Engn, Beijing Lab New Energy Vehicles, Beijing 100124, Peoples R China
  • [ 6 ] [Yang, Jinxin]Beijing Univ Technol, Coll Energy & Power Engn, Beijing Lab New Energy Vehicles, Beijing 100124, Peoples R China
  • [ 7 ] [Hong, Chen]Beijing Univ Technol, Key Lab Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 8 ] [Ji, Changwei]Beijing Univ Technol, Key Lab Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 9 ] [Wang, Shuofeng]Beijing Univ Technol, Key Lab Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 10 ] [Xin, Gu]Beijing Univ Technol, Key Lab Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 11 ] [Meng, Hao]Beijing Univ Technol, Key Lab Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 12 ] [Yang, Jinxin]Beijing Univ Technol, Key Lab Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 13 ] [Wang, Zizheng]Beijing Automobile Res Inst Co Ltd, Beijing 101300, Peoples R China

Reprint Author's Address:

Show more details

Related Keywords:

Source :

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY

ISSN: 0360-3199

Year: 2023

Issue: 53

Volume: 48

Page: 20495-20506

7 . 2 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:19

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 2

Affiliated Colleges:

Online/Total:2728/10984837
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.