Indexed by:
Abstract:
When multiple central processing unit (CPU) cores and integrated graphics processing units (GPUs) share off-chip main memory, CPU and GPU applications compete for the critical memory resource. This causes serious resource competition and has a negative impact on the overall performance of the system. We describe the competition for shared-memory resources in a CPU-GPU heterogeneous multi-core architecture, and a shared-memory request scheduling strategy based on perceptual and predictive batch-processing is proposed. By sensing the CPU and GPU memory request conditions in the request buffer, the proposed scheduling strategy estimates the GPU latency tolerance and reduces mutual interference between CPU and GPU by processing CPU or GPU memory requests in batches. According to the simulation results, the scheduling strategy improves CPU performance by 8.53% and reduces mutual interference by 10.38% with low hardware complexity.
Keyword:
Reprint Author's Address:
Email:
Source :
FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING
ISSN: 2095-9184
Year: 2023
Issue: 7
Volume: 24
Page: 994-1006
3 . 0 0 0
JCR@2022
ESI Discipline: COMPUTER SCIENCE;
ESI HC Threshold:19
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: