Indexed by:
Abstract:
The multi-objective differential evolution (MODE) algorithm has high computational complexity of the selection strategy in solving complex multi-objective optimization problems. To address this issue, a multi-objective differential evolution with data-driven selection strategy (MODE-DDSS) is proposed. First, the ranking evaluation criteria of optimization solutions is designed, and the ranking evaluation database of optimization solutions based on evaluation criteria is established. Then, a data-driven selection strategy, based on a two-way search mechanism and a non-repeated comparison mechanism, is designed to search and compare the optimal solutions efficiently, and select the optimal solutions. Finally, a multi-objective differential evolution algorithm with the data-driven selection strategy is constructed, which reduces the complexity of optimal solution selection operation and improves the optimization efficiency of the algorithm. Experimental results show that the proposed MODE-DDSS algorithm can effectively reduce the number of comparison operations in the selection strategy, and improve the efficiency of the multi-objective differential evolution algorithm in solving complex multi-objective optimization problems. © 2023 Northeast University. All rights reserved.
Keyword:
Reprint Author's Address:
Email:
Source :
Control and Decision
ISSN: 1001-0920
Year: 2023
Issue: 7
Volume: 38
Page: 1816-1824
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 13
Affiliated Colleges: