Indexed by:
Abstract:
As one of the key technologies of intelligent transportation systems, short-term traffic volume prediction plays an increasingly important role in solving urban traffic problems. In the last decade, many approaches were proposed for the traffic volume prediction from different perspectives. However, most of these approaches are based on a large amount of historical data. When there are only finite collected traffic data, they cannot be well trained, so the prediction accuracy of these approaches will be poor. In this paper, a tensor model is proposed to capture the change patterns of continuous traffic volumes. From collected traffic volume data, the element data are extracted to update the corresponding elements of the tensor model. Then, a tucker decomposition and gradient descent based algorithm is employed to impute the missing elements of the tensor model. After missing element imputation, the tensor model can be directly applied to the short-term traffic volume prediction through searching the corresponding elements of the model and the storage cost of the model is low. Our model is evaluated on real traffic volume data from PeMS dataset, which indicates that our model has higher traffic volume prediction accuracy than other approaches in the situation of finite traffic volume data. © 2023, Systems Engineering Society of China and Springer-Verlag GmbH Germany.
Keyword:
Reprint Author's Address:
Email:
Source :
Journal of Systems Science and Systems Engineering
ISSN: 1004-3756
Year: 2023
Issue: 5
Volume: 32
Page: 603-622
1 . 2 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:19
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count: 2
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: