Abstract:
为应对泵站场景下设备和人员之间目标被遮挡及远距离小目标对泵站重点区域安全帽佩戴自动监管带来的挑战,提出了一种融合注意力机制和跨尺度特征融合的安全帽佩戴检测算法,以克服在远距离、有遮挡场景下安全帽检测准确度低的问题.通过采集泵站监控视频数据构建泵站场景安全帽数据集,在特征提取网络中加入注意力机制模块,使得模型更关注于小目标的通道信息;同时增加检测层使得特征融合时能结合多级特征,并使用柔和非极大值抑制(Soft Non-Manimum Suppression,Soft-NMS)和完全交并比(Complete Intersection over Union,CIoU)算法进行改进以减少遮挡目标漏检情况.在自建数据集进行试验,结果表明改进后的算法平均准确率达到93.5%,与其他目标检测算法相比精度均有所提升,证明该方法在泵站重点区域场景安全帽检测任务中具有良好的性能.
Keyword:
Reprint Author's Address:
Email:
Source :
测控技术
ISSN: 1000-8829
Year: 2023
Issue: 7
Volume: 42
Page: 16-21,118
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 31
Affiliated Colleges: