• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Zhang, L. (Zhang, L..) | Zhu, B. (Zhu, B..) | Liu, X. (Liu, X..) | Ma, C. (Ma, C..)

Indexed by:

EI Scopus

Abstract:

The semantic segmentation task of medical image is to segment the focus, organ or substructure of human body in medical image. It plays an important role in locating and identifying the diseased area and making medical plan. In various medical image segmentation tasks, the U-shaped architecture has achieved great success. Transunet introduces Transformer with global attention mechanism into the U-shaped architecture, which overcomes the inherent limitations of convolution, but because it still continues the original skip connections structure, it will bring the strong noise from features in the shallow network into the high semantic features of the deep network, thus affecting the segmentation accuracy. UTSN-net model based on the combination of Transformer and nonlocal attention mechanism is proposed. UTSN-net uses Transformer to overcome the inherent limitations of convolution, and introduces the skip connections module based on nonlocal attention mechanism into the U-shaped network, which can comprehensively consider the deep features with global context information and the shallow features with accurate high-resolution positioning information to improve the accuracy of segmentation results. Experiments on synapse multi-organ abdominal CT dataset verify that UTSN-net has better semantic segmentation performance. © 2023 SPIE.

Keyword:

Semantic Segmentation Attention Mechanism Deep Learning Medical Image

Author Community:

  • [ 1 ] [Zhang L.]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 2 ] [Zhu B.]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 3 ] [Liu X.]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 4 ] [Ma C.]Faculty of Information Technology, Beijing University of Technology, Beijing, China

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Related Article:

Source :

ISSN: 0277-786X

Year: 2023

Volume: 12715

Language: English

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 6

Affiliated Colleges:

Online/Total:654/10654988
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.