Indexed by:
Abstract:
Conventional evaluation of the overall mechanical properties and ultimate flexural capacity of prestressed hollow core slabs after a fire exposure depends heavily on the inversion of fire scene temperature. To avoid this drawback, this paper presents a new methodology which combines a generalized regression neural network (GRNN) with conventional non-destructive testing technology. Thereby, a neural network model for predicting the material performance parameters after fire exposure is obtained based on conventional testing indices. A hollow core slab bridge is used as an example, and the applicability of the trained network model is confirmed using numerical simulation and a field failure test. Results show that the overall relative error of GRNN in predicting the key performance parameters of the bridge after fire exposure is less than 10%. Further, because of the good thermal inertia of the concrete, the relative error in predicting the material performance parameters of steel after a fire is less than 5%. Moreover, the ultimate flexural capacity of the prestressed hollow core slab after a fire can be accurately evaluated by feeding the material performance parameters predicted by GRNN neural network into the finite element (FE) model.
Keyword:
Reprint Author's Address:
Email:
Source :
STRUCTURAL ENGINEERING INTERNATIONAL
ISSN: 1016-8664
Year: 2023
Issue: 1
Volume: 34
Page: 77-86
1 . 1 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:19
Cited Count:
WoS CC Cited Count: 3
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: