Indexed by:
Abstract:
本发明公开一种基于循环生成对抗网络的卫星图阴影去除方法,生成器分别实现图像的阴影去除和阴影生成工作,判别器分别判断生成图像是否属于有/无阴影图域,生成器和判别器共同促进阴影去除任务的实现。该发明首先分析自然场景的有/无阴影图像中的阴影亮度特征和纹理特点,以降低分辨率的高分辨率卫星图为无阴影卫星图像,并在此基础上构建含有模拟阴影的有阴影卫星图像。然后,通过循环生成对抗网络对配对的有/无阴影卫星图像的学习,从而泛化地解决真实卫星图像中阴影去除的问题。本发明主要针对卫星图像中没有配对的有/无阴影图像进行了数据集的模拟制作,提出了循环生成对抗网络以阴影生成任务辅助阴影去除,实现在有/无阴影卫星图域之间的图像迁移,并以视觉自注意力模型的非传统编码器模块辅助生成器进行更好的特征迁移。相比于传统模块,它对调了多头自注意力机制和层归一化,对调了多层感知机和层归一化,可以使得网络拥有更强的建模能力。
Keyword:
Reprint Author's Address:
Email:
Patent Info :
Type: 发明申请
Patent No.: CN202310641115.8
Filing Date: 2023-06-01
Publication Date: 2023-08-18
Pub. No.: CN116612135A
Applicants: 北京工业大学
Legal Status: 实质审查
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: