Indexed by:
Abstract:
本发明涉及一种面向水环境数据时间序列预测的方法,特别是涉及一种基于SG(Savitzky Golay)滤波与编码器‑解码器结构的稀疏注意力机制(ProbSparse Self‑Attention Mechanism, PSAM)和多头注意力机制(Multi‑Head Attention Mechanism, MHAM)的单监测断面时序多要素水质预测方法。首先,针对获取的水文、气象等多要素数据指标通过皮尔逊相关系数(Pearson Product‑Moment Correlation Coefficient, PPMCC)进行特征筛选,选定数据后通过SG滤波进行平滑处理。其次,再进行水质数据的归一化处理后输入预测模型,利用稀疏注意力机制降低模型的复杂度,并通过多头注意力机制计算水质多要素权重占比来推断不同的水环境要素之间的关系对水质变化的影响。最后,通过生成式解码器(Generative Style Decoder, GSD)进行一次正向预测,建立一种较为精确的水环境时间序列预测模型。
Keyword:
Reprint Author's Address:
Email:
Patent Info :
Type: 发明申请
Patent No.: CN202211344096.4
Filing Date: 2022-10-31
Publication Date: 2023-02-03
Pub. No.: CN115689015A
Applicants: 北京工业大学
Legal Status: 实质审查
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: