Indexed by:
Abstract:
本发明公开了一种基于多模型融合的血管内超声图像斑块识别方法,先使用卷积层提取图像特征并扩充特征图数量,将特征图输入至多个挤压与激励残差模块,扩充特征图数量,提取深层特征的同时重新自适应的校准了特征通道之间的依赖性,改善网络对于特征信息的敏感度,通过残差块实现对于图像信息的多层复用并解决了深度学习中的梯度爆炸问题。经过多次训练得到训练好的斑块识别模型。本发明使得原有IVUS医学图像特征仅由残差模块采集提取,改进为挤压与激励模块和残差模块共同决定,使得模型对于训练医学图像特征提取更为全面,由于残差模块存在,避免了深层网络的梯度爆炸等问题,从而能够有效提升残差网络对于血管内超声图像斑块识别的准确率。
Keyword:
Reprint Author's Address:
Email:
Patent Info :
Type: 发明申请
Patent No.: CN202210239809.4
Filing Date: 2022-03-12
Publication Date: 2022-06-10
Pub. No.: CN114612746A
Applicants: 北京工业大学
Legal Status: 实质审查
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: