Indexed by:
Abstract:
本发明公开一种基于混合长短时记忆神经网络的水质指标预测方法,首先,将获取到的水质指标历史数据依照时间序列进行排序,并对该水质历史数据采用SG滤波平滑预处理。然后,再进行水质数据的归一化处理,将水质时间序列数据按照预设的滑动窗口大小划分为多个子序列作为特征序列,也就是转为有监督的数据后,输入基于编码‑解码器的长短时记忆ED‑LSTM神经网络模型,预测未来多个时间点的水质指标值,最终获取精准度较高的水质指标预测结果。
Keyword:
Reprint Author's Address:
Email:
Patent Info :
Type: 发明授权
Patent No.: CN201911116695.9
Filing Date: 2019-11-15
Publication Date: 2022-05-06
Pub. No.: CN110852515B
Applicants: 北京工业大学
Legal Status: 授权
Cited Count:
WoS CC Cited Count: 2
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 10
Affiliated Colleges: