Indexed by:
Abstract:
本发明提供了一种基于超图变换网络的分类方法,用于解决现有技术无法深刻发掘异构网络中的高阶语义信息,进而无法准确进行分类的问题。本方法提出了一个端到端的超图变换网络(Hypergraph Transformer Neural Networks,HGTN),利用超边增幅节点间的沟通能力学习高阶关系,并挖掘不同类型节点间的语义信息。具体地,利用注意力机制为不同类型超图分配权重,级联学习原始异构超图中隐含的高阶语义信息,生成有用的元路径,以端到端的方式学习节点嵌入特征,完成节点分类任务。该方法具有良好的准确率与普适性,适用于引文网络,媒体网络,社交网络等异构网络的节点分类任务。
Keyword:
Reprint Author's Address:
Email:
Patent Info :
Type: 发明申请
Patent No.: CN202111294128.X
Filing Date: 2021-11-03
Publication Date: 2022-01-11
Pub. No.: CN113919441A
Applicants: 北京工业大学
Legal Status: 实质审查
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0