Indexed by:
Abstract:
本发明公开一种基于单一深度图像的3D人体姿态估计方法。首先提出改进型特征提取办法,综合利用部位尺寸信息和距离变换信息,来指导深度梯度特征提取,可极大增强所提特征的表达能力;为解决随机森林部位分类时存在的误分类问题,提出误分类处理机制—多级随机森林整合算法来去除部位误分点,获得更为准确的部位识别结果;通过改进PDA,利用位置权重阈值处理办法,使能够利用识别的部位尺寸信息,自适应的再次去除部位中的干扰点,从而获得更为准确的主方向向量;最后利用人体部件配置关系得到姿态估计结果。本发明改善了部位分类模型的准确率,并能有效去除识别部位中的误分类干扰点,提高识别部位的准确性,最终获得更为准确的3D人体姿态估计结果。
Keyword:
Reprint Author's Address:
Email:
Patent Info :
Type: 发明授权
Patent No.: CN201711406248.8
Filing Date: 2017-12-22
Publication Date: 2021-11-05
Pub. No.: CN108154176B
Applicants: 北京工业大学
Legal Status: 授权
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 12
Affiliated Colleges: