Indexed by:
Abstract:
本发明公开一种基于多源潜在特征选择性集成(SEN)建模的DXN排放浓度软测量方法。首先,将MSWI过程数据依据工业流程划分为不同来源的子系统,采用主元分析(PCA)分别提取其潜在特征,并依据经验预设的主元贡献率阈值进行多源潜在特征初选;接着,采用互信息(MI)度量初选的潜在特征与DXN间的相关性,自适应确定潜在特征再选的上下限及阈值;最后,基于再选潜在特征,采用具有超参数自适应选择机制的最小二乘‑支撑向量机(LS‑SVM)算法,建立针对不同子系统的DXN排放浓度子模型,采用基于分支定界(BB)和预测误差信息熵加权算法的策略优化选择子模型和计算权系数,构建DXN排放浓度SEN软测量模型。
Keyword:
Reprint Author's Address:
Email:
Patent Info :
Type: 发明授权
Patent No.: CN201910224790.4
Filing Date: 2019-03-24
Publication Date: 2021-09-10
Pub. No.: CN109960873B
Applicants: 北京工业大学
Legal Status: 授权
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 7
Affiliated Colleges: