• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

孔德慧 (孔德慧.) (Scholars:孔德慧) | 邱鹏飞 (邱鹏飞.) | 王少帆 (王少帆.) | 尹宝才 (尹宝才.) (Scholars:尹宝才)

Indexed by:

incoPat zhihuiya

Abstract:

一种基于三阶段模型的短时交通流预测方法属于智能交通系统领域,本发明提出了VMD‑GCN‑GRU模型,实现对交通数据的短时预测。与现有的短时交通流预测方法相比,通过对路网交通数据进行变分模态分解(Var i at i ona lMode Decompos it i on,VMD), 可以削弱大部分噪声,有效降低原始信号的非平稳性,分解得到多组本征模态函数(I ntr i ns i c Mode Funct i on,I MF)和残差,把分解后的具有相似中心频率的I MF和残差依次输入GCN与GRU模型中进行预测,将得到的预测结果进行重构,从而得到最终的预测结果。实验表明,基于VMD‑GCN‑GRU模型的预测精度相比于其它深度学习预测方法有了较大的提升。

Keyword:

Reprint Author's Address:

Email:

Show more details

Related Keywords:

Related Article:

Patent Info :

Type: 发明申请

Patent No.: CN202110153458.0

Filing Date: 2021-02-04

Publication Date: 2021-05-14

Pub. No.: CN112801386A

Applicants: 北京工业大学

Legal Status: 实质审查

Cited Count:

WoS CC Cited Count: 0

SCOPUS Cited Count:

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 4

Online/Total:997/10686496
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.