Indexed by:
Abstract:
本发明涉及一种基于拓扑结构和CNN的几何图形识别方法,用于识别平面几何图形。首先,对原图形进行预处理,得到不包含字母的、前景为白色的几何图形;然后再进行霍夫直线检测,合并检测结果中属于同一条边的线段,提取几何图形的边;接着,计算边与边的交点,得到图形各顶点及形成顶点的边编号;之后,根据顶点与边的关联关系获取顶点间邻接关系,用以表示图形拓扑结构;在保证几何图形拓扑结构不变的前提下,通过在预设容忍度内移动图形顶点构建同构图形库作为基础训练集,并进行扩充;最后,以加深隐藏层层数、增加各层卷积核个数的方式改进LeNet‑5模型,基于同构图形训练集进行自动特征提取和学习,完成对平面几何图形的识别。
Keyword:
Reprint Author's Address:
Email:
Patent Info :
Type: 发明授权
Patent No.: CN201910337675.8
Filing Date: 2019-04-25
Publication Date: 2021-04-30
Pub. No.: CN110059760B
Applicants: 北京工业大学
Legal Status: 授权
Cited Count:
WoS CC Cited Count: 36
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 13
Affiliated Colleges: