Indexed by:
Abstract:
本发明公开一种基于HELM并结合PTSNE流形和LDA特征融合的运动想象脑电分类方法,并提高其分类准确率。在特征提取方面,一方面,用PCA结合LDA方法提取线性特征,既可以消除噪声,又可以考虑训练数据的标签信息;另一方面,通过PTSNE和LDA获得非线性结合特征,可以发掘脑电中复杂的非线性内在流形特征。在特征分类方面,采用有高分类准确率的HELM算法做运动想象脑电信号分类识别。
Keyword:
Reprint Author's Address:
Email:
Patent Info :
Type: 发明授权
Patent No.: CN201910183172.X
Filing Date: 2019-03-12
Publication Date: 2021-03-02
Pub. No.: CN109977810B
Applicants: 北京工业大学
Legal Status: 授权 ; 许可
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 8
Affiliated Colleges: