Indexed by:
Abstract:
一种基于集成神经网络的长短混合型文本分类优化方法,属于自然语言处理领域,包括初始化、预处理、构建长文本分类算法、构建短文本分类算法、构建集成分类算法与迭代中止六个步骤。该方法首先使用基于预测的预训练词向量与基于统计的预训练词向量构建文本数据的双通道表示;其次在双通道文本表示基础上,提出融合通道特征的卷积优化算法,提高了传统卷积算法在文本数据上的空间特征提取能力;然后基于优化后的卷积算法分别设计了适用于长文本分类与短文本分类的独立算法;最后使用集成策略对独立算法进行自动评估与加权融合,集成后的算法在混合文本数据分类场景中表现出优异的性能,相比于已有经典算法具有更高的分类准确率与分类稳定性。
Keyword:
Reprint Author's Address:
Email:
Patent Info :
Type: 发明申请
Patent No.: CN202010083328.X
Filing Date: 2020-02-09
Publication Date: 2020-06-19
Pub. No.: CN111309906A
Applicants: 北京工业大学
Legal Status: 驳回
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: