Indexed by:
Abstract:
一种应用浅层神经网络进行中医面色自动分类的方法属于计算机视觉领域。设计的浅层网络层数共有5层,采用三种不同的层结构,分别为输入层、特征提取层、输出层。输入层由一个卷积层和修正线性单元组成;特征提取层由3层网络组成,前两层的每层都由一个卷积层和ReLU激活函数组成,在卷积层和ReLU之间都有一个批归一化,并在特征提取层的第二个ReLU后面加入池化层,特征提取层的第三层是一个全连接层,后接一个修正线性单元ReLU;输出层由全连接层组成,后加一个softmax分类器。本发明在分类精度上有明显优势,对缩放、平移、旋转等畸变具有不变性,有很强的鲁棒性,能够有效的提高分类精度,将深度学习的理论应用于中医面诊客观化研究。
Keyword:
Reprint Author's Address:
Email:
Patent Info :
Type: 发明授权
Patent No.: CN201710692254.8
Filing Date: 2017-08-14
Publication Date: 2019-11-15
Pub. No.: CN107516312B
Applicants: 北京工业大学
Legal Status: 授权
Cited Count:
WoS CC Cited Count: 0
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 11
Affiliated Colleges: